top of page

Ripple Effect 180 Group

Öffentlich·286 Mitglieder

Ascidian Tadpole


Download File > https://geags.com/2tlGJa





The locomotor system is highly bilateral at the macroscopic level. Homochirality of biological molecules is fully compatible with the bilateral body. However, whether and how single-handed cells contribute to the bilateral locomotor system is obscure. Here, exploiting the small number of cells in the swimming tadpole larva of the ascidian Ciona, we analyzed morphology of the tail at cellular and subcellular scales. Quantitative phase-contrast X-ray tomographic microscopy revealed a high-density midline structure ventral to the notochord in the tail. Muscle cell nuclei on each side of the notochord were roughly bilaterally aligned. However, fluorescence microscopy detected left-right asymmetry of myofibril inclination relative to the longitudinal axis of the tail. Zernike phase-contrast X-ray tomographic microscopy revealed the presence of left-handed helices of myofibrils in muscle cells on both sides. Therefore, the locomotor system of ascidian larvae harbors symmetry-breaking left-handed helical cells, while maintaining bilaterally symmetrical cell alignment. These results suggest that bilateral animals can override cellular homochirality to generate the bilateral locomotor systems at the supracellular scale.


Physical and chemical cues from the environment are used to direct animal behavior through a complex network of connections originating in exteroceptors. In chordates, mechanosensory and chemosensory neurons of the peripheral nervous system (PNS) must signal to the motor circuits of the central nervous system (CNS) through a series of pathways that integrate and regulate the output to motor neurons (MN); ultimately these drive contraction of the tail and limb muscles. We used serial-section electron microscopy to reconstruct PNS neurons and their hitherto unknown synaptic networks in the tadpole larva of a sibling chordate, the ascidian, Ciona intestinalis. The larva has groups of neurons in its apical papillae, epidermal neurons in the rostral and apical trunk, caudal neurons in the dorsal and ventral epidermis, and a single tail tip neuron. The connectome reveals that the PNS input arises from scattered groups of these epidermal neurons, 54 in total, and has three main centers of integration in the CNS: in the anterior brain vesicle (which additionally receives input from photoreceptors of the ocellus), the motor ganglion (which contains five pairs of MN), and the tail, all of which in turn are themselves interconnected through important functional relay neurons. Some neurons have long collaterals that form autapses. Our study reveals interconnections with other sensory systems, and the exact inputs to the motor system required to regulate contractions in the tail that underlie larval swimming, or to the CNS to regulate substrate preference prior to the induction of larval settlement and metamorphosis.


Evolution is of interest not only to developmental biology but also to genetics and genomics. We are witnessing a new era in which evolution, development, genetics and genomics are merging to form a new discipline, a good example of which is the study of the origin and evolution of the chordates. Recent studies on the formation of the notochord and the dorsal neural tube in the increasingly famous Ciona intestinalis tadpole larva, and the availability of its draft genome, show how the combination of comparative molecular development and evolutionary genomics might help us to better understand our chordate ancestor.


Ascidian tadpole: A free-swimming tadpole-like larva of ascidians, characterized by a head (bearing internal organs and adhesive papilla) and tail (with notochord and neural tube) (Stachowitsch, 1992).


Ascidiacea, commonly known as the ascidians, tunicates (in part), and sea squirts (in part), is a polyphyletic class in the subphylum Tunicata of sac-like marine invertebrate filter feeders.[2] Ascidians are characterized by a tough outer "tunic" made of a polysaccharide.


There are 2,300 species of ascidia




https://www.aceonlineenglish.com/group/ace-english-brainstorm/discussion/ea8ef716-bf63-4866-8c53-151242161107

Info

Welcome to the group! You can connect with other members, ge...

Mitglieder

bottom of page